

Net Social Benefit of Developing Energy from Biomass in Argentina: An input-output analysis for the province of Misiones.

Lorenzo Perrotta, María Priscila Ramos, Carlos Adrián Romero

IIEP-Baires (UBA-CONICET); Universidad de Buenos Aires; AgroParisTech; Universidad Nacional de La Plata

24th ICABR Conference, October 12, 2020.

Table of contents

- 1. Introduction
- 2. Methodological Approach
- 3. Simulation Results
- 4. Conclusions

Introduction

Background

Argentina Energy Sector Situation

Figure 1: GHG emissions by sector in Argentina

 UN-SDG 7: "Ensure access to affordable, reliable, sustainable and modern energy for all"

Figure 2: Installed capacity of bioenergies in Argentina

- Law 27,191 (2015): Renewable Energies reaching 20% by December 2025.
- Law 27,424 (2017): Distributed Generation of Renewable Energies integrated into the public grid. $_{2}$

Background

Misiones Situation

- Misiones Total Installed Capacity: 323MW.
 Biomass Installed Capacity: 83MW.
- · Laws XVI-106, XVI-104, XVI-97 and the Net Balance Law.

Objectives '

Main objectives:

- 1. Evaluate the net social benefit of the development and the investment on bioenergy from biomass in Misiones.
- Study and estimate characteristics of the forest biomass sector and its value chain in Misiones, due to lack of information in official statistics.
- Using an Input-Output Model simulate production and investment scenarios and extract lessons for sectoral public policies and possible modifications of the current regulations.

Methodological Approach

1. Regional Input-Output Matrix

2. Regional Input-Output Model

Regional Input-Output Matrix

Data Sources

- · Argentina Input-Output Matrix of 1997
- · Economic census data for 2004.
- · Supply and use tables for 2004.
- Level of occupation by activity sector of Misiones from the 2010 census.
- Crop data from Ministry of Agriculture, Livestock and Fisheries.
- · WISDOM reports 2015-2018.
- Surveys to companies in the biomass sector.

Treatment

- Transformation from the national matrix into regional matrix for Misiones, using Flegg Location Quotients, indirect method.
- Information from surveys added on technologies, consumption and intermediate sales of the biomass sector, direct method.
- Matrix balancing method: RAS/ bi-proportional balancing technique.

Regional Input-Output Matrix

MIS	51	52	53	54	\$5	s6	57	58	59	s10	511	512	513	514	s15	s16	s17	s18	s19	s20	s21	522	s23	524	\$25	C prov	X prov	DF resto	Total
51	177.5	70.8	23	2.310.5	17.9	123.3	0.3	27.1	121.3	0.0	0.0	0.0	0.0	0.3	343	310	317	0.2	1.4	116.9	34.4	344	2.0	5.4	1.4	1.663.0	л_ргот	535.3	5.175
52	277,5	70,0		1.484.0	27,0	223,3	-	24.2	-	-	-	0,0	0,0	-				0,2	4,7	220,5			2,0	0.0	4,4	2.003,0		785.5	2.298
53			2.7	2.6	0.3	0.3	0.3			18.0	0.3	0.0	0.2	0.2	0.0	0.0	0.2	44.0		0.9			7.5	1.3	0.0	3.3		111.5	194
54	111.6	0.1	0.7	940.1	8.9	11.6	5.6	24.6		3.2	0.7	2.7	0.3	3.6	0.4	0.0	0.1	2.0	13.6	918.4	3.5	6.4	22.6	60.8	104.8	11.191.4			13,437
s5	1.6	0.4	0.0	7.3	6.2	1.3	2.8			0.3	0.3	1.0	0.2	1.6	0.0	0.0	0.0	0.3	4.8	3.0	0.9	0.9	3.6	4.3	11.9	250.7			303
56	19.9	1.2	2.0	134.5	0.9	1.349.5	5.9	16.0	70.1	4.7	3.0	4.6	0.2	44.0	1.1	0.2	0.5	158.4	326.5	13.6	6.8	21.2	152.0	39.6	52.4	159.7		10.373.8	12.962
57	5.2	3.7	0.3	57.5	2.2	9.8	10.4	0.3	0.2	1.2	1.3	11.8	2.7	7.7	0.2	0.0	0.2	10.8	15.9	5.9	25.7	0.3	11.3	3.8	16.5	180.2		170.8	555.3
s8	58.8	161.9		164.1			2.9									71.3												118.4	577
59						407.8																						59.3	467
s10	1.1		0.1	21.6	0.0	0.8	1.2			5.6	1.0	2.4	0.6	0.5	0.0	0.0	0.1	118.6	4.4	0.1	0.1	0.2	25.3	0.8	3.4	41.4		137.2	367
s11	0,7		0,1	6,8	0,1	2,1	1,5			0,6	2,5	20,1	3,9	2,2	0,6	0,0	0,2	36,3	1,1	0,2	0,8	2,6	4,2	0,6	2,3	32,7		196,7	319
s12	0,4		0,1	0,5	0,1	0,5	0,1			0,1	0,9	9,4	1,5	0,3	0,2	0,3	0,1	8,8	2,2	0,1	1,0	7,5	4,1	0,8	4,0	135,4		301,1	480
s13	0,1		0,0	0,1	0,0	0,0	0,0			0,0	0,1	0,8	0,4	0,0	0,0	0,0	0,0	0,8	0,7	0,0	2,3	0,1	0,1	0,1	0,3	15,7		81,4	103
514	0,6		0,1	2,7	0,5	2,0	1,0			0,3	1,0	1,1	2,0	10,2	0,1	0,1	0,0	23,7	7,3	2,2	0,3	0,5	11,2	4,4	39,8	559,2		289,6	960
s15	1,7		0,5	2,4	0,1	1,2	0,5			0,3	0,3	0,4	0,2	0,2	0,2	0,1	0,3	1,4	2,0	0,8	9,3	2,4	6,5	4,0	7,2	4,5		64,7	111
s16	1,5		2,3	34,0	0,5	25,6	3,0	0,0	0,0	3,3	1,1	0,9	0,2	1,9	0,1	29,2	6,4	26,6	143,9	24,3	19,8	10,8	16,2	18,7	21,8	96,0		1.170,3	1.658
s17	0,2		0,1	3,8	0,0	0,3	0,3			0,1	0,1	0,1	0,0	0,2	0,0	0,0	0,0		2,5		4,7	0,2	1,7	8,3	5,8	114,4		104,2	247
s18	2,2		0,2					0,0	0,0	0,1	0,2	0,0			0,0	2,6	4,9		55,2	2,6	26,6	7,8	400,8	91,7	57,9			11.612,0	12.265
s19	171,2	37,6	8,2	880,6	17,0	174,6	46,2	0,0	0,0	15,1	22,6	51,7	10,4	55,7	5,5	9,1	11,1	819,3	832,3	354,0	208,2	75,8	459,2	205,5	584,4	1.903,6		24.280,5	31.239
s20	20,8	0,3	0,3	116,5	1,9	27,2	12,5			6,2	9,1	13,9	2,3	13,0	4,1	1,1	0,2	1,1	40,1	98,8	26,1	26,4	85,8	105,7	109,9	1.153,6		2.991,9	4.869
s21	138,4	30,0	7,8	143,4	3,1	21,2	16,3			8,0	7,6	11,4	2,6	9,8	1,6	0,2	29,4	44,5	84,7	53,8	230,7	63,3	76,4	43,0	47,4	2.758,1		814,5	4.647
s22	0,9		0,9	26,9	0,8	4,2	3,3			1,4	1,7	3,7	0,4	1,3	0,3	0,2	1,0	2,4	59,5	6,3	28,7	74,4	120,1	37,1	48,0	845,9		340,4	1.610
s23	43,8	1,1	16,4	175,1	4,7	42,4	20,3			8,9	12,5	18,8	2,1	16,9	4,4	5,1	11,3	54,9	827,0	277,6	320,5	189,6	1.079,6	345,4	632,1	4.160,3		8.777,9	17.049
s24	3,4	2,7	0,5																23,6	0,0			9,4	7,4	0,5	782,9		14.657,9	15.488
s25	16,4	0,3	1,1	10,4	0,1	4,0	0,8			0,3	0,4	0,7	0,1	0,3	0,2	0,1	0,1	18,8	44,3	4,7	29,2	38,1	135,5	208,5	986,3	4.317,9		4.775,2	10.594
CI_ARG	685,3	370,1	25,2	1.117,9	24,3	2.892,6	138,8	139,7	81,7	48,0	59,3	43,9	7,8		12,1	489,3	43,3	2.902,4	4.659,1	932,5	1.195,5	206,0	1.262,1	1.291,8	1.542,7				
CI_M	128,8	55,9	3,9	203,9	12,9	779,7	53,0			14,0	21,5	48,7	14,8		8,5	177,7	6,6	954,6	645,8	84,2	231,4	71,8	337,5						
T	374,6	165,2	2,8	2.295,7	47,8	876,1	45,2	54,3	30,4	18,4	12,8	46,2	16,7	115,5	4,8	-807,4	21,9	191,9	256,0	579,4	283,7	162,3	1.506,3	18,9	774,1				
L	924,0	354,1	9,8	970,6	74,3	1.529,4	41,7	80,2	45,0	46,2	66,4	49,7	15,9	495,2	9,1	369,2	29,8	3.514,0	11.643,0	431,9	1.322,5	88,2	3.225,8	10.817,4	3.534,5				
K	1.932,6	896,2	97,6	1.411,6	47,1	2.876,9	91,7	164,2	92,1	103,9	49,7	80,4	5,9	89,0	40,2	787,8	51,6	2.138,7	6.142,0	810,8	253,5	434,1	6.094,8	647,1	1.332,3				
TL	156,9	56,2	3,8	400,9	23,2	669,5	24,9	19,2	10,8	22,2	23,6	20,0	9,2	44,5	7,7	290,0	23,4	646,2	2.440,5	113,4	378,3	43,1	1.040,3	1.498,7	561,9				
TK	194,7	90,3	6,3	511,2	8,3	1.128,3	24,8	27,6	15,5	36,4	19,0	35,1	2,3	46,5	9,8	232,2	4,3	544,2	2.959,9	32,2	37,3	75,6	946,8	17,2	105,6				
Total	5.175	2.298	194	13.437	303	12.962	555,5	577	467	367	319	480	103	960	111	1.658	247	12.265	31.239	4.869	4.647	1.610	17.049	15.488	10.594	30.370	0	82.750	137.975

- We obtain a 25 sector I-O Matrix including the Forest Biomass sector.
- The sectors important to dissagregate it were Agriculture, forestry and fishing, Paper and Wood, Chemical products.
- The industrial forestry sector consumes more than 80% of the total biomass demanded.
- Crops that contribute the most to obtain biomass are forest cultivation, yerba mate and tea plantations.

1. Regional Input-Output Matrix

2. Regional Input-Output Model

Regional Input-Output Model

- · Closed and Open Input-Output Models based on Miller & Blair (2009).
- Use of output and employment multipliers to capture the difference between the initial effect of an exogenous change and the total effects of that change.
- Simple or Type I multipliers: direct and indirect effects. Open Models.
- Total or Type II multipliers: direct, indirect and induced effects. Closed Models.

1. Scenarios

2. Results and Discussions

Scenarios

Table 1: Scenarios

Scenario	Shock	Justification
Scenario A	15% increase in production	Possible underestimation of installed capacity.
Scenario B	Increased investment to double production capacity 1) equipment locally produced in Misiones 2) imported equipment	Double the installed capacity.
Scenario C	WISDOM biomass potential impact	Make use of the 3,940,068 tons per year biomass surplus.

 Increases in final demand resulting from increases in final consumption of bioenergy and investment in the expansion of productive capacity are simulated.

1. Scenarios

2. Results and Discussions

_	Scenario				ΔΧ				ΔL							
			Direct	Indirect	Induced	Total	mult 1	mult 2	Direct	Indirect	Induced	Total	mult 1	mult 2		
^	Production increase	15%	70	34	11	115	1,49	1,64	45	174	27	246	4,90	5,52		
	TOTAL		70	34	11	115	1,49	1,64	45	174	27	246	4,90	5,52		

 Δ X: increase in production in millions of \$ of 2015; Δ L: increase in employment; Total: direct, indirect and induced impacts; mult 1 and mult 2: type I and type II multipliers.

- A) Total impact of 115 million pesos on provincial gross value of production (GVP).
 - Total job creation of 246 new positions: 45 direct, 174 indirect and 27 induced.
 - Multiplier effects on employment disaggregated by contribution by gender: Female participation of 6% (open model) and 9% (closed model).

	Scenario			ΔΧ			ΔL							
	Scenario		Direct	Indirect	Induced	Total	mult 1	mult 2	Direct	Indirect	Induced	Total	mult 1	mult 2
Α	Production increase	15%	70	34	11	115	1,49	1,64	45	174	27	246	4,90	5,52
А	TOTAL		70	34	11	115	1,49	1,64	45	174	27	246	4,90	5,52
	Investment	83 MW	1.923	582	888	3.393	1,30	1,76	3.169	1.314	2.310	6.793	1,41	2,14
B.1	Production		985	484	148	1.617	1,49	1,64	628	2.448	385	3.461	4,90	5,52
	TOTAL		2.908	1.066	1.036	5.010	1,37	1,72	3.796	3.762	2.695	10.254	1,99	2,70
	Investment	83 MW	846	149	489	1.484	1,18	1,75	2.121	311	1.270	3.702	1,15	1,75
B.2	Production		985	484	148	1.617	1,49	1,64	628	2.448	385	3.461	4,90	5,52
	TOTAL		1.831	633	637	3.100	1,35	1,69	2.749	5.508	1.655	7.163	2,00	2,61

 Δ X: increase in production in millions of \$ of 2015; Δ L: increase in employment; Total: direct, indirect and induced impacts; mult 1 and mult 2: type I and type II multipliers.

Investment

- B.1) Total impact of 3.393 million on GVP.
 - · Total job creation of 6.793 new jobs.
 - Female participation of 13% (open model) and 19% (closed model).
- B.2) · Total impact of 1.484 million on GVP.
 - · Total job creation of 3.702 new jobs.
 - Female participaation of 11% (open model) and 17% (closed model).

Production

- B) Total impact of 1.617 million on GVP.
 - Total iob creation of 3.461 new iobs.
 - Female participation of 6% (open model) and 9% (closed model).

_					Δ)	/		ΔL							
	Scenario -		Discort.	Indirect				Is 2							
			Direct	Indirect	Induced	Total	mult 1	mult 2	Direct	Indirect	Induced	Total	mult 1	mult 2	
Α	Production increase	15%	70	34	11	115	1,49	1,64	45	174	27	246	4,90	5,52	
	TOTAL		70	34	11	115	1,49	1,64	45	174	27	246	4,90	5,52	
	Power increase	83 MW	1.923	582	888	3.393	1,30	1,76	3.169	1.314	2.310	6.793	1,41	2,14	
B.1	Production		985	484	148	1.617	1,49	1,64	628	2.448	385	3.461	4,90	5,52	
	TOTAL		2.908	1.066	1.036	5.010	1,37	1,72	3.796	3.762	2.695	10.254	1,99	2,70	
	Power increase	83 MW	846	149	489	1.484	1,18	1,75	2.121	311	1.270	3.702	1,15	1,75	
B.2	Production		985	484	148	1.617	1,49	1,64	628	2.448	385	3.461	4,90	5,52	
	TOTAL		1.831	633	637	3.100	1,35	1,69	2.749	5.508	1.655	7.163	2,00	2,61	
	Investment	215 MW	4.980	1.506	2.300	8.786	1,30	1,76	8.204	3.404	5.982	17.590	1,41	2,14	
C	Production		2.550	1.253	383	4.186	1,49	1,64	1.625	6.340	997	8.962	4,90	5,52	
	TOTAL		7.530	2.758	2.684	12.972	1,37	1,72	9.829	9.744	6.979	26.552	1,91	2,58	

ΔX: increase in production in millions of \$ of 2015; ΔL: increase in employment; Total: direct, indirect and induced impacts; mult 1 and mult 2: type I and type II multipliers.

- C) · Total impact of 12.972 million on GVP.
 - Total job creation of 26.552 new jobs: 66% from installation of plants (17.590). Job creation of 8.962 positions during plants' lifespan.
 - Female participation of 13% (open model) and 19% (closed model) in the investment phase. Female participation 6% (open model) and 9% (closed model) female participation in the production phase.

Variant in the calculation of direct jobs

	Phase	ΔL											
	riiase	Direct	Indirect	Induced	Total	mult 1	mult 2						
Scenario B	Production	88	2446	384	2.918	28,84	33,22						
Scenario C	Production	227	6333	997	7.557	28,84	33,22						

Total: direct, indirect and induced impacts; mult 1 and mult 2: type I and type II multipliers.

Sensitivity Scenario

- Previous simulations considered large scale biomass plants.
- Now we consider increase in installed capacity through small and medium-sized plants (lower direct employment requirements).
- Considerable increase in employment multipliers in both the open and closed models, from 4,9 to 28,44 (type I) and from 5,52 to 33,22 (type II).
- Direct employment generation decreases from 628 new positions to 88

 (B) and from 1.625 to 227 (C). Indirect and induced employment almost unchanged.

Conclusions

Conclusions

Summary

- We developed a Regional I-O Matrix for Misiones, a province which displays a great biomass potencial.
- Using both the open and closed I-O Model we evaluated the impact on production and employment of different production and investment scenarios.
- Main findings: Impacts on production and job creation increased notably when considering locally produced machinery and equipment. Complementary with gender agenda to increase female participation in new jobs created.

Policy Suggestions

Extensions

Thank you for your attention Questions, comments and suggestions are welcome!